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Abstract 

This research presents the development of an Adaptive Routing Algorithm for 

Priority (ARAP) flows in a Network.  Many devices used in today’s battle space require 

information to function properly.  The additional bandwidth requirements for such 

devices place an increased burden on the already congested networks in the battle space.  

Some devices require real time information (high priority) and other devices will not 

require real time information (low priority).  The most popular existing protocols treat the 

network like an opaque entity and have little knowledge of user requirements. User 

requirement information is available in tactical networks and we can take advantage of 

the known requirements to better optimize network behavior.  One such optimization is 

during times of congestion ARAP will enable better quality of service for higher priority 

information.  Mechanisms such as the Network Tasking Order (NTO) and Network 

Weatherman (NWM), both previously developed at AFIT, can provide this information 

to facilitate improved network behavior.  The NTO gives advance knowledge of network 

state allowing for improved quality of service guarantees.  The NWM provides future 

estimates on the utilization of specific network queues.   
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ADAPTIVE ROUTING ALGORITHM FOR PRIORITY FLOWS IN A NETWORK 

I.  Introduction 

Many of today’s consumer software applications rely on real time information not 

stored on the host system.  These applications work by sending and receiving the 

information they need via network connections.  This is no different in the military where 

many of today’s weapons systems also rely on real time information such as external 

sensors and live videos feeds.  A special network called the Global Information Grid 

(GIG) is utilized by these systems to share information and is the military’s answer to 

support the transition to the Network Centric Operations doctrine.  The GIG is a highly 

complex and widespread network that enables the sharing of information between 

multiple users and weapons systems alike [5].   

In the last two decades, the GIG has seen a dramatic increase in bandwidth 

demand.  The majority of this increase is due to the heavy reliance of unmanned weapon 

systems [5].  Additionally, some defense officials feel that the increased reliance on the 

GIG may outpace their ability to increase the available bandwidth [5].  For example, 

some users can experience longer delays in sending information from source to 

destination, or, in some instances, information can be dropped from routers when 

network buffers become full, resulting in information loss.   

Many of the routing policies employed today apply a shortest path philosophy that 

enables networks to meet many of the delay requirements for user applications.  This type 

of system works well when the bandwidth demand is relatively low when compared to 

the overall bandwidth of the network.  In this type of routing philosophy, some of the 
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links and routers can experience high utilization rates, causing unnecessary delay and 

packet loss.  At the same time, some links and routers in the system may be under-

utilized.  This two-pronged scenario is economically wasteful within the cyber-domain.  

An adaptive routing philosophy can direct some traffic on over-utilized routes and instead 

guide it along links that are not experiencing over-utilization.  The algorithm that realizes 

this philosophy must be adaptive in order to capture the variability in network resource 

utilization. 

Quality of Service 

Quality of Service (QoS) in a network can be partially defined as throughput, loss 

rate and latency.  Throughput is the amount of information that travels across a given 

network during a specified period.  The loss rate is defined as the amount of information 

that does not reach its intended destination divided by the amount of information sent by 

the source.  Latency is the time it takes the information to reach its destination once it has 

left the source. 

The QoS that many mainstream networks provide can be considered equal 

opportunity because their guarantees are applied evenly to all traffic no matter the type.  

In fact, current Routing Information Protocol (RIP) and Open Shortest Path First (OSPF) 

routing protocols both use a shortest path metric to construct routing tables for a network 

router.  In [27, 21] there is discussion that states that this can cause some problems, the 

first being that some links could become overused thereby causing congestion.  Secondly, 

the capacity of the shortest path link could be met and exceeded during the same time that 

a longer path may be experiencing under utilization.  This even distribution of QoS may 
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not have an adverse effect on the well-being of mainstream civilian users.  However, 

during military operations human lives depend on information carried by military 

networks.  Delaying or dropping information has the potential to cause unforeseen harm 

to government interests.   

By utilizing traffic engineering, a process by which one can exploit the fact that 

there are usually multiple paths between source-destination pairs in a network [27], 

network optimizations can be made with regards to QoS guarantees at the network layer 

with control mechanisms in place.  When multiple paths exists between a source and 

destination, higher priority flows can be given preferential treatment on the path of their 

choice and low priority flows can be sent on different paths that do not adversely affect 

the high priority flows.  This assumes that the military has the ability to categorize 

information into priority types that will allow military operations to benefit from the 

ability to distinguish between different types of priority information. 

The focus of this research is to be able to give QoS guarantees to specific types of 

information flows in the network layer.  These guarantees are in the form of delays and 

packet loss rate based on the type of flow.  These guarantees are needed in a military 

environment where the timeliness and accuracy of sending and receiving different types 

of information can affect the outcome of the conflict. 

A network that provides a diverse range of QoS to specific types of information 

can enable the user to ensure that time-sensitive and mission-critical information receive 

the resources necessary for mission success.  This research proposes an adaptive routing 

algorithm that employs additional mechanisms to provide QoS guarantees to the higher 

priority information in the network.  The adaptive routing algorithm is designed to 
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operate in the Network and Link layers of the internet protocol stack.  It does not utilize 

or build on top of any other QoS mechanisms. 

Five Layers of the Internet 

Basic internet architecture and its mode of operation in cyberspace is a massive 

undertaking to describe in its minute description; however, its general overall structure is 

based on the inter-relationships between five layers: Application, Transport, Network, 

Link and Physical.  Each layer is both unique and integral in the way it supports the cyber 

domain. These layers work together simultaneously to help break down the complex 

nature of sending information from one system application to another.  When these layers 

are combined together, they make up the five-layer Internet protocol stack, as seen in 

Table 1 [16]. 

Table 1: The Five-Layer Internet Protocol Stack [16] 

Application 

Transport 

Network 

Link 

Physical 
 

 

This research looks to the network layer as a place to improve upon the QoS for 

information flows.  This is accomplished with an intelligent agent that has the ability to 

change the route that a flow takes based on its given priority.  

 A brief summary of what is to follow includes an explanation of the application 

and transport layers, which reside on each of the host computers.  Following that is a 

discussion on how the link and physical layers make up the actual routers and wires that 
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connect the routers.  Lastly, a description is given of the network layer, which can be 

defined as the bridge between the host computer and the routers. 

Application Layer 

Many programs on the host computer use the application layer to communicate.  

Each program may use one or more application layer protocol.  For instance, Microsoft 

Outlook utilizes the Simple Mail Transfer Protocol (SMTP), which provides the ability to 

transfer email messages from one computer to another or, as another example, a web 

browser uses Hypertext Transfer Protocol (HTTP) to interpret information from web 

servers to display their information on the computer screen.  In order for applications 

installed on separate computers to communicate, they each must have a program installed 

on them that implements the same application layer protocol.  When applications need to 

communicate with one another they typically need to transfer various sizes of 

information.  When the information is too large to send in one piece, the application layer 

breaks the information up into smaller pieces and passes them down to the transport layer 

in the form of messages [16]. 

Transport Layer 

The transport layer is responsible for relaying the application layer messages from 

the sending host to the receiving host.  There are currently two types of transport layer 

protocols: Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) that 

an application can use to share information. 

TCP provides a connection-oriented service that is utilized only by the end 

systems and not by any of the routers or link layers that make up the switching aspects of 

the network.  TCP also provides a guarantee of in order message delivery to applications 
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[16].  If information is lost in the network (i.e. dropped by a router), TCP will re-transmit 

the missing information until all information has reached the destination.  Additionally, 

when TCP detects congestion on the link, a congestion control mechanism starts a back 

off routine, which lowers the sending rate of the information.  The adverse effect of the 

congestion control mechanism is that it can cause a transfer of information to take longer 

and therefore it cannot give any QoS guarantees with respect to speed. 

UDP is a connection-less service and the messages are sent on a best effort basis 

with no guarantees that a message will arrive at its destination.  However, it does provide 

a constant sending rate for applications, which is used to support video or voice type 

flows in a network.  UDP is often referred to as the best-effort protocol. The transport 

layer protocols then pass their information in the form of a segment down to the network 

layer with a destination address.   

Network Layer 

The basic responsibility of the network layer is to ensure that packets of 

information sent from a source reach its intended destination based on an address 

associated with the information.  The network layer utilizes only one protocol called the 

Internet Protocol.  Any internet components that have a network layer must implement 

this protocol [16].  The only QoS guarantee the network layer offers is for throughput and 

packet loss rates and these guarantees are not specific to any type of traffic.  

The internet protocol is augmented by a routing protocol which determines the 

route packets take to reach their destinations.  The routes that are calculated by the 

routing protocols are installed on the routers in the form of routing tables.  The Network 

Layer, based on data provided by the routing tables, places information on the outgoing 
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links of the router.  There are several routing protocols in use today and this layer is a key 

focus in this research.     

Link Layer 

The link layer protocol is responsible for moving packets between adjacent hosts 

or routers within a network.  These hosts and routers are also known as nodes and the 

terms can be used interchangeably.  There are several protocols in this layer but two of 

the most common are Ethernet, which is used for wired connections and WiFi, which is 

used for wireless connections.  Packets are passed back and forth between the link layer 

and the network layer at each node until its destination is reached. 

Physical Layer 

The job of the physical layer is to transport the actual information from one node 

to the next.  As is similar in other layers, several protocols are associated with the 

physical layer and many of these protocols depend on the transportation medium (i.e. 

wireless, twisted pair or fiber optic cables). 

Once the information reaches its destination, the network layers passes the 

information up to the transport layer where it is put back together into larger pieces prior 

to being passed to the application layer on the receiving computer.   

Summary of Internet Layers 

All these layers have specific requirements on how information is to be passed 

from one layer to the next.  This allows the creation of new protocols as long as all 

protocols conform to the defined requirements. 
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Priority Levels 

When utilizing the shortest path routing mechanism to calculate routes for flows 

in a network all flows are treated equally.  By assigning a priority level to each packet in 

a flow a routing mechanism could potentially pick different routes for the flows based on 

priority.  For example, source node A and a destination node B have two flows associated 

with them called flow1 and flow2.  Flow1 is a high priority flow and Flow2 is a low 

priority flow.  In order to use priority levels, a routing mechanism that can inspect the 

priority level for each packet in a flow is necessary to send the two flows along different 

paths in the network.  This can help alleviate congested links by routing lower priority 

flows around the congested links in the network thus giving special treatment to high 

priority flows.  This research uses two priority levels called high and low to implement a 

routing protocol that gives higher priority packets better quality of service with in the 

network. 

General Issue 

The number of weapon systems in today’s military requiring real-time 

information has skyrocketed in the past 15 years.  For these systems to operate properly, 

they must connect to a network and receive the information that they require to operate.  

The addition of these advanced weapon systems have caused increased demand for 

network bandwidth.  In fact, a Congressional Research Service (CRS) report from 2007 

stated that the peak rate of information disseminated on military networks for 

OPERATION IRAQI FREEDOM (OIF) was approximately 30 times higher than that of 

OPERATION DESERT STORM (ODS) [5].  The increase in network bandwidth is 
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primarily due to the addition of weapon systems that require real-time information.  

During OIF many of the networks that these devices depended on were deficient in 

available bandwidth and, as a result, communication officers had to disconnect network 

cables so that only high priority information could gain access to the network [5]. 

Military operations can benefit from a routing algorithm that can take into account 

user requirements to help alleviate network congestion where possible.  By placing 

information into high and low categories, the network can leverage the categories to 

automate the stopping or slowing of low priority information during times of high 

network utilization.  Through automation, the same officers that were left unplugging 

network cables during OIF to prevent lower priority information from getting on the 

network can now be utilized to complete other tasks. 

Problem Statement 

Can higher priority information experience better quality of service through 

implementation of an adaptive routing algorithm that utilizes network predictive 

mechanisms to help route information flows in the network?  Lower priority flows will be 

allowed to continue provided there is an alternate path.  If no other path can be found 

than the lower priority flow will be paused. 

Hypotheses 

Utilizing network predictive mechanisms and a multicommodity flow algorithm 

facilitates improved management of network information streams.  The improved 
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management of these network streams enables the user to give better quality of service to 

specific information by categorizing it into levels of priority. 

Research Objectives 

The adaptive routing algorithm has the following research objectives: 

1. Develop a priority aware routing protocol for network flows 

2. Improve the quality of service for higher priority flows in the network 

3. Integrate the prediction of queue sizes into the routing protocol 

Research Focus 

To investigate the feasibility of combining network state predictive mechanisms 

and a routing algorithm that balances the network bandwidth across multiple paths in the 

network.   

Investigative Questions 

The investigative question that will be looked at during this research will be 

whether the Network Tasking Order (NTO) can increase the QoS experienced by flows in 

a network and if predicting a queues utilization rate can increase the QoS experienced by 

flows in a network. 

Assumptions 

This paragraph covers the assumptions associated with the research.  Information 

in a military network would have to be categorized into different buckets such as mission 

essential and routine/normal.  Each bucket can then receive a priority level giving the 
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information contained within it the same priority.  This gives all flows in the network a 

discernible marker that can be used to prioritize the flow of information.  By marking 

information, routing algorithms can be tailored to meet the demands of the user by 

enforcing prioritization of flows in the network. 

Implications 

If this research proves successful, the implications are that a network can be flow 

aware and assist the user in better controlling how information flows through their 

network.  Another implication results in better control over the QoS experienced by flows 

based on a priority structure.  A lower packet loss rate would mean that less traffic has to 

be resent thereby reducing the load placed on the network.  A smaller delay would result 

in faster delivery of information. 

Summary 

This chapter introduced the problem that demand for bandwidth may outpace its 

availability on the GIG causing undesirable affects concerning QoS.  A definition for 

QoS was provided and shown how it relates to the problem and solution.  The internet 

layers were introduced and there correlation with the research shown.  Priority levels and 

the role they play in this effort by allowing two different flows having the same source 

and destination could take different paths based on their priorities.  This chapter also 

discussed the general issue and problem being investigated.  Research objectives and 

focus were presented that will help to prove the hypothesis followed by investigative 

questions, assumptions, limitations and implications that deal with this research.   
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The remainder of the document flows in the following manner.  Chapter Two (II) 

gives a review of other research efforts that have tried to institute a network layer 

protocol that give QoS guarantees with discussion on how they are different.  The pieces 

to the Adaptive Routing Algorithm for Priority are outlined.  Chapter Three (III) covers 

the methodology used that covers such things as approach, system workload, 

performance metrics and lastly the simulation setup is covered.  Chapter Four (IV) 

contains the results of the simulations and a discussion on the investigative questions that 

were asked in this chapter.  Chapter Five (V) the final chapter concludes the research 

through a discussion on the significance of the research and recommendations for future 

research in this area.  
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II. Literature Review 

Chapter Overview 

Chapter II starts by covering other concepts that improve the Quality of Service 

(QoS) of network flows through enhancement of network layer protocols.  The basic 

operation of those concepts and some of their limitations is discussed.  Followed by,  how 

this research addresses these limitations.  The remainder of the chapter is a summary of 

prior research efforts that the Adaptive Routing Algorithm for Priority (ARAP) flows 

utilizes.  It covers the basic operation and ideas that those research areas cover and the 

type of information that the research provides.   

Flow Aware Network 

The Flow Aware Network (FAN) concept was introduced by [20], which provides 

a way for users to control traffic in a network based on what its creators call implicit 

admission control and per-flow scheduling.  The authors state that FAN provides 

adequate QoS guarantees for streaming and elastic flows and it does this without class 

distinction or control signals to route traffic specification.  An elastic flow is described as 

a file that is being transferred that can withstand varying transfer rates.  Video or voice 

type flows represent streams and they typically cannot withstand varying transfer rates.   

The basic pieces that make up the FAN architecture are Admission Control, 

Protected Flow List, Priority Fair Queuing and Cross-protect Router.  The admission 

control block controls the start of new flows going through the router.  When the system 

is not experiencing congestion and a new flow arrives, the ID of the flow is placed in the 

protected flow list, which stores all the flows currently in progress.  The admission 
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control uses a timeout parameter to let it know when to remove a flow from the list.  

When the arrival time between packets for a flow exceeds this parameter, the admission 

control assumes that the flow has completed.  When congestion is detected, no new flows 

are allowed to start.  In ARAP, new high priority flows would be allowed to start during 

times of congestion and low priority flows could start if there was a path from source to 

destination that was not congested. 

The fundamental component of FAN is the cross-protect router, which is 

developed in [15].  This special router enables additional storage and processing of 

information for the system.  The cross-protect router also contains a scheduler which 

estimates the max rate that can be realized by an elastic flow.  Additionally, the scheduler 

is responsible for detecting congestion on the link.  Congestion is present on the link 

when the fair_rate<min_fair_rate or priority_load>max_priority_load.   

In [6] FAN was compared to other QoS architectures, such as Differentiated 

Services and Integrated Services, and was found to be easier to implement and also 

conformed to net neutrality paradigms.  However, some drawbacks were noted. First, 

elastic flows had the potential to be broken each time the protected flow list was flushed. 

Second, the admission control would accept too many new flows into the protected flow 

list after a flush had occurred.  The consequence of the latter issue was the re-emergence 

of congestion.  To fix these drawbacks three new mechanisms were proposed in [6].  The 

ARAP system also prevents these drawbacks mainly because it does not utilize the 

protected flow list because low priority flows are expendable. 

The FAN concept is similar to this research in that they are both placed within the 

network layer and the goals of the two ideas are to give QoS guarantees to flows based on 
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a flow type.  This research looks at priority of a flow as the discriminator for QoS 

whereas the FAN concept uses streaming and elastic flow types as its discriminator.  In 

the ARAP system, the high priority flow is the protected flow on a global scale unlike the 

FAN that has a protected flow list on each element.  Having a separate protected flow list 

on each element could potentially cause a problem if a flow is considered protected on 

one router but not another.  The ARAP system does not suffer from the same affect.  

Finally, the FAN system still relies on Transmission Control Protocol (TCP) to help 

establish the correct transmission rates.  ARAP does not rely on TCP to ensure that 

transmission rates are constant.   

Multiprotocol Label Switching 

Multiprotocol Label Switching (MPLS) is another form of traffic engineering in 

which an application exploits alternate routes between source-destination pairs to balance 

the congestion in the network.  ARAP and MPLS are both implemented at the router 

level and they share the same goal of increasing the QoS through balancing the load 

across multiple paths in the system.  A couple of differences between the two are that 

MPLS attaches a packet header to the packet making each packet a little larger, which 

increases the needed bandwidth for a flow.  This has an adverse effect on links that are  

considered to have a low bandwidth or currently experiencing congestion.  If ARAP were 

to be deployed in the real world than it could keep the same standard internet protocol 

header unlike MPLS, which has to create a new packet header that, it places over top of 

the existing information.  For example, the ARAP would utilize the Traffic Class field for 

IPv6 type packets and the Differentiated Services field on an IPv4 packet.   
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MPLS employs a special router referred to as a label switch router [27].  Label 

switch routers are located at the edge of the network and they encapsulate incoming 

packets with a new header and remove the header just before a packet leaves the network.  

Subsequent routers refer to this label to ensure the packet goes out the correct outgoing 

link.   

The information contained in the internet protocol header of the packet and local 

network information is the basis for the MPLS label that is attached to a packet as it 

enters the MPLS network.  The interior label switch routers inspect the labels on the 

incoming packets then send them to the appropriate outgoing link and replace the current 

label with a new one as required.   

In [7] the approach is to try to balance the traffic bandwidth on multiple label 

switched paths between the ingress and egress nodes.  The balancing of traffic in [7] is 

accomplished through a MPLS Adaptive Traffic Engineering technique.  MPLS Adaptive 

Traffic Engineering technique uses a dual phased approach that includes monitoring and 

load balancing phases.   

The monitoring phase measures packet delay and loss via probe packets.  To do 

this, the system sends out probe packets from the ingress node to an egress node based on 

the traffic class they are monitoring.  The egress node will then send the packet back to 

the ingress node with information that will allow it to calculate the one-way trip time and 

packet loss rate.  When the monitoring phase detects congestion in the link it switches to 

the load-balancing phase.   

During the load-balancing phase, the traffic-engineering block makes decisions 

about which flows need to be changed to equalize the traffic on the congested label 
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switched paths.  In other words, if the delay or packet loss rate is high for a particular 

label switched path the traffic-engineering block will make changes to incoming flows so 

that the flows can avoid the congested paths. 

The MPLS networks in [27, 21] utilize the current state of the network to 

calculate the label switched paths and to balance the network bandwidth across those 

paths.  When [7] monitors the demand on the label switched paths they use real time 

measurements to make decisions.  Currently, MPLS does not look at using a predicted 

network approach however, that is possible using a Network Tasking Order (NTO) and 

Network Weatherman (NWM). 

Network Tasking Order 

A NTO is a concept explored by Matt Compton.  The Air Force does not currently 

utilize this concept as presented in [4].  However, network routing algorithms can be 

developed that utilize the types of information provided by a NTO.  The NTO concept 

provides a snapshot of what the network will look like in the future and “directs the day-

to-day operation of specific portions of the GIG” [4].  This advanced knowledge of 

network state will enable a routing algorithm to preplan routes for traffic flows.   

Information Provided 

The NTO contains a vast amount of daily information about the GIG.  Much of 

that information, as it pertains to specific networks on the GIG, can be pulled out and 

utilized to create efficient routes for information flows in the network.  The information 

provided by the NTO includes such things as when and where additional potential nodes 

will be located, what kind of service they can provide to the network, and what types of 
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connections they can support.  This research builds on this idea by saying that the NTO 

also provides information on potential source-destination pairs that share high priority 

information throughout the course of a day. 

Network Weatherman 

The NWM is a stochastic estimator based on a Kalman Filter design that enables 

the prediction of future queue sizes for specified queues in a network [24].  A limitation 

that the NWM contains is that it must be tuned to the network for it to sufficiently predict 

future queue sizes.  Tuning of the NWM is accomplished by finding values for the 

variables that represent the variance of the dynamic noises given in [24].   

With the knowledge of a potential future state of network routers, a routing 

algorithm has the ability to make advanced decisions that could increase the QoS at the 

network layer.  For instance if it is predicted that a specific router will become full at 

some time in the future the routing algorithm can alter some flows and send them along 

another path.   

Information Provided 

The NWM provides a potential future state of the network in the form of 

predicted queue sizes.  The NWM provides predictions on an interval basis that is 

controlled by an external variable and this variable can be changed during operation.  

Additionally, the user can set how far into the future they want the predictions to take 

place however, this value is set at the beginning of the simulation.  
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Multicommodity Flow Algorithm 

The Multicommodity Flow (MCF) algorithm is a family of algorithms that 

attempts to send as much information as possible across a network given some 

constraints and an objective function.  Three commonly used MCF algorithms are the 

Max Concurrent Flow, Maximum Multicommodity Flow and Minimum Cost Concurrent 

Flow [10, 12, 13, 24].  The next few sections discusses the general description of a 

multicommodity flow problem followed by the maximum concurrent flow problem 

which is used to route higher priority flows for this research effort. 

Multicommodity Flow Problem Description 

A Multicommodity Flow problem is defined using the following nomenclature.  A 

directed network G with a set of vertices and edges called V and E.  Each edge in the 

network has a corresponding capacity  .  In addition, there are multiple source 

destination pairs contained respectively in sets labeled as S and D.  Individual source 

destination pairs are        where       .  The value   is the number of source 

destination pairs in the system.  The problem is to route the flows    through the system 

from   to   that satisfy some node conversion constraints as well as to meet an objective 

function criterion without exceeding the edge capacities in the graph, such that the sum of 

all the flows going over a particular edge does not exceed its capacity [10].  The 

following more completely describes the mathematical multicommodity flow problem 

from: “A multicommodity flow problem is defined on a directed network           

with capacities       and  source-sink terminal pairs              .[10]” 
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Criterion: 

Equation 1 

              
 

   
 

 

Maximum Concurrent Flow Problem 

A Maximum Concurrent Flow Problem (MCFP) is a subset of the 

Multicommodity Flow problem.  The MCFP is where source-destination pairs can send 

and receive information concurrently.  The throughput ratio between all flow supplied by 

the         pairs must be the same [24].  More specifically each flow j has assigned to it a 

demand dj where the objective is to maximize the ratios of all demands given by the 

following objective function for a MCFP [10]: 

Equation 2 

                  

 

In essence, this is saying that all flows will receive the same bandwidth ratio, 

based on the flow that is the limiting factor for the group.   

The downside to this approach is that no one flow can send its entire throughput 

unless there is room for all flows.  The causal effect is that all flows are treated equally 

and that hinders one’s ability to use priority as a qualifier for routing.  My research uses 

the idea of the MCFP presented by [10] but does not limit a flow’s throughput based on 

the demand for one particular flow.  The objective of my research is to maximize the 
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amount of information flowing across the network while at the same time providing 

quality of service guarantees to higher priority information. 

Fleischer has been able to construct a multicommodity flow algorithm that is 

faster when k > m/n, or more specifically, when the number of commodities k is divided 

by m edges over n nodes. 

 

Figure 1: Multicommodity Algorithm [10] 

 

Figure 1 depicts the algorithm from Fleischer that is used in this research to 

spread the flow out for the source destination pairs.  The inputs and output of the 

algorithm are listed in lines 1 and 2.  Line 3 starts the algorithm where all the edges in the 

graph are initialized to a length of delta divided by the capacity for that edge.  This 

initialization step makes the edges with the larger edge capacity more favorable to the 

shortest path algorithm.  Line 4 checks the termination condition.       is calculated by 

multiplying all edge lengths by their respective capacities and summing them up which, 
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is then compared to one.  Line 6 takes makes a copy of the demand for a particular 

commodity.  Next, in line seven is the termination criterion for the inner loop is checked.  

Line 8 finds the shortest path using Dykstra’s shortest path algorithm while at the same 

time checking to ensure the demand for the commodity can be satisfies by all edges in the 

path.  Lines 9 and 10 are used when trying to find the true max concurrent flow where 

commodities can be split up on multiple paths.  This research is not using splittable-

paths; therefore, these two lines are ignored.  Line 11 adds the path to the set x and the 

associated demand for that commodity.  Line 12, then, lengthens each edge in the path by 

a small amount.  The small amount is described as epsilon multiplied by the demand 

required by the commodity divided by the capacity for that edge.  The lengthening of the 

edges in the path prevents overuse of any particular edge in the system. 

The value chosen for epsilon directly affects the runtime of the algorithm.  The 

value of delta affects only the starting edge lengths for the algorithm but if a small 

enough delta is not used then the sum of all edge lengths times their capacity could cause 

the algorithm to not enter the first while loop by being greater than one at the start of the 

algorithm.   

A randomized rounding algorithm is then used to take the output from the 

Fleischer algorithm to then choose paths in the network to route the flows without 

violating any of the edge constraints. 

Summary 

Chapter II discussed other research efforts that made enhancements to the 

network layer such as the FAN and the MPLS.  Both have shown to improve the QoS in 
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the networks that they are implemented on as well as balance out the bandwidth demand 

across the network edges.  Some of their limitations were that special routers would be 

needed to implement in the case of the FAN or additional bandwidth was being used 

because of the need to implement a new header that only worked in that network in the 

case of MPLS routing.  One key aspect of both these approaches is that they rely on the 

current state of the network in order to make their adjustments.   

The last part of the chapter discussed the research associated with the parts of the 

ARAP.  This research included the NTO, NWM and multicommodity flow algorithm, the 

key aspects of this research were covered along with the information that each provides 

to the ARAP.  The subsequent chapter goes into the methodology behind the ARAP 

research and covers how the research covered in last part of this chapter goes into the 

making of the ARAP. 
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III. Methodology 

Chapter Overview 

This chapter discusses the methodology to evaluate the Adaptive Routing of 

Priority Flows in a network.  This chapter is organized in the following manner.  First, 

the approach for the overall research area is discussed, which covers how the logic 

behind the Adaptive Routing Algorithm for Priority.  Additionally, the approach provides 

an overview of the research being conducted and describes the scope of this research.  

Second, the problem is defined, which includes the goals and hypothesis of the research.  

This section also covers the approach to the experiment and how the stated goals are 

achieved.  Third, system boundaries and various system attributes are covered to include 

services, workload, performance metrics, system parameters and factors.  Finally, the 

evaluation technique and the experimental design are covered followed by a summary of 

the chapter’s main points. 

Approach 

Network flows are managed through various mechanisms including multicommodity 

flow algorithm, caching scheme, Network Tasking Orders (NTO) and Network 

Weatherman (NWM).  The multicommodity flow algorithm used to set up the routes for 

each of the high priority flows is from [10] which has a runtime of O(       

          ) where m is the number of links in the network, k is the number of 

commodities in the network and   is the desired accuracy of the solution.    

The NTO provides advance knowledge of network behavior and assigns priorities 

to each of the flows.  The NTO contains additional node and link information over and 
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above normal topological information of the network.  A near-term estimate (or snapshot) 

of network conditions is given by the Network Weather Man (NWM) which provides an 

estimate of the future queue size for a given node.  The NWM is used on the most heavily 

used links to predict queue sizes.  Another agent uses the predicted queue size to restrict 

packets allowed on that link by giving higher priority packets access to the link while 

making the lower priority flows find another way to their destination.  The caching 

scheme is the initial rerouting mechanism for the lower priority flows.  If the cached 

route for the flow is also unavailable then the agent will try to find another route for the 

lower priority flow if the agent cannot then the flow is stopped. 

Adaptive Routing Algorithm for Priority 

The Adaptive Routing Algorithm for Priority (ARAP) takes input from the NWM, 

NTO and the network topology.  This information is an input to the adaptive routing 

algorithm (as seen in Figure 2) and produces the routing tables that are then installed on 

the routers in the network.  
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Figure 2: Adaptive Routing Algorithm Vision 

 

The NWM components make a prediction every 0.5 seconds and they predict out 

six tenths of a second into the future.  For this research, the predicted information is sent 

out of band however, for a real life network, this information would travel over the same 

edges as the network traffic is using.  This could cause additional side effects not 

explored in this research and will be discussed in the future work section. 

Routing Algorithms Used 

The ARAP design is based on a series of external inputs that triggers various 

mechanisms to calculate and trigger the installation of network routing tables.  There are 

two types of routing algorithms that make up the ARAP the first is the multicommodity 

flow algorithm that was discussed in Chapter II that handles the routing of the high 

priority flows and the Floyd Warshall algorithm calculates the shortest path routes 

between each node and it utilized by the low priority flows.  
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This seems counter intuitive at first glance because one would expect that the 

higher priority flows would utilize the shortest path.  However, the routing algorithms 

were chosen for these priority levels for the following reasons.  First, in order to utilize 

the multicommodity flow algorithm discussed in chapter II prior knowledge of the flow 

information is needed.  The NTO provides this information but only for the high priority 

flows.  As a result, routes could not be precalculated for all low priority flows without 

utilizing shortest path routing since any possible node can send to any other node.  

Second, low priority flows did not need to be spread out over the network because if an 

edge were congested the low priority flow would be rerouted around the congested link.   

The NTO nodes are only utilized by the low priority flows because they are sent 

best effort.  High priority flows do not utilize the NTO information to prevent possible 

disruption of those flows due to the potential unavailability of the NTO nodes. 

How the Adaptive Routing Algorithm Works 

 The algorithm takes in the network topology information as well as the 

information for the high priority flows given by the NTO and the multicommodity flow 

algorithm is used to calculate the routes for the high priority flows.  This algorithm 

returns multiple possible paths if they exist for each flow and a randomized rounding 

algorithm is used to pick which route to take.  Then routing tables for those flows were 

installed.  Next, the Floyd Warshall algorithm is ran twice once without the NTO 

information and once with the NTO information and the second time it is ran the routing 

table information is cached waiting for the NTO nodes to become available. 

The system checks every two tenths of a second to see if the NTO nodes and 

edges are available.  When they are available, the system would install the routing tables 
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that used the NTO information.  When the NTO nodes and edges are no longer available, 

the network switches back to the routing tables that do not utilize the NTO information.     

If the ARAP receives a predicted queue size value that is above the queue 

utilization parameter it will hide that edge from the network and the Floyd Warshall 

algorithm is ran again.  When the utilization of a queue drops back below twenty percent 

that edge is placed back in the network for low priority flows use.    

Simulation Setup 

Software and Operating System Details  

The simulation is set up on a Linux computer system running Centos 5.8 with 

Kernel version 2.6.18-308.1.1.el5.  The simulation is run with ns-allinone-2.34 that 

includes added functionality developed at AFIT.  The agent developed for this simulation 

utilizes the code base from Captain Larry Llewellyn with some significant modifications.  

The use of a MATLAB2010b engine is necessary for the incorporation of the NWM.  

However, NWM was created using MATLAB2007b therefore in order to get NWM 

properly integrated into the simulation the MATLAB2007b libraries are used at compile 

time. 

Network Setup 

A software topology generator developed by Georgia Tech is utilized to generate 

the network topologies used and it is referred to as GT-ITM.  The GT-ITM transit stub 

routine was used to generate the four topologies.  Topologies 1 and 2 are shown in 

Figures 3 and 4 respectively.  Topology 3 and 4 are located in the Appendix A.  Figures 3 

and 4 portray a group of small nodes that are connected to each other through single 

links.   
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Figure 3: Topology 1 

 

 

Figure 4: Topology 2 

 

The Table 2 shows the parameter values used to generate topologies 2 and 4.  The 

values in Table 2 created a network with 105 nodes and approximately 580 one-way 

edges.   
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Table 2: GT-ITM Variables Used 

Number of transit domains 1 

Average nodes/transit domain 3 

Average stub domain/transit node 5 

Average nodes/stub domain 6 
 

 

Appendix B shows the file used by the GT-ITM program to produce topologies 2 

and 4.  In addition to the variables listed in Table 2 Appendix B shows some other 

variables that affect how the topologies are constructed.   

Flow Generation  

 A random scheme is used for the generation of flows for the simulation.  NS-2 is 

partially built using Tool Command Language (Tcl) which has built in random number 

generators that were used to generate the random flows for the network.  A flow consists 

of a Source and Destination node, Start Time, Priority Level and Size.  Table 3 displays 

which distribution is used for each part of the flow listed above.   

Table 3: Types of Random Distributions used for Flow Generation 

Part of Flow  Distribution Type 

Flow Source Uniform 

Flow Destination Uniform 

Start Time Exponential 

Priority Level Uniform 

Flow Size ParetoII 
 

 

 An equal likely hood of being chosen was need for source, destination and 

priority level parts of a flow therefore a uniform distribution is chosen.  Internet traffic is 

considered to have a heavy-tailed distribution [11].  The ParetoII distribution in Tcl is 

chosen to represent the flow size because it provides the heavy-tail distribution needed.  
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Finally, an exponential start time is needed to mimic the exponential arrival of packets at 

each of the nodes.  Table 3 does not show a stop time for the flows because it was 

calculated based on the start time and the flow size. 

 The number of flows generated at the beginning of the simulation depends on the 

total bandwidth of the network and the bandwidth demand variable found in Table A.  

For example if the if a network has 20 edges and each edge has a bandwidth of 2 MB 

with the bandwidth demand variable set to 0.65 than 26 MB worth of flows will be 

generated.   

Flow Routing  

The NTO gives source destination pairs for high priority flows therefore the 

maximum concurrent flow algorithm developed by Fleischer is used to route the high 

priority flows priority at the start of the simulation.  This more evenly distributes the 

higher priority flows around the network to help prevent one or more links from being 

over utilized.  The lower priority flows utilize a shortest path route based on the source 

and destination node.   

System Boundaries 

The ARAP system includes the network, that consists of nodes and links, the flow 

agent, NWM, and the NTO.  The nodes in the network are responsible for routing the 

flows through the network according to their routing table.  Links in the network carry 

the flows from one node to another.  The link delay is not considered as a part in this 

system and is set to 15ms for all edges in every simulation.  The flow agent as part of the 

system is being tested and compared to other simulations that do not utilize an adaptive 
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flow agent.  The flow agent ensures that the higher priority flows get preference on 

congested links between clusters of nodes using information from the NWM and NTO.  

Figure 5 shows a notional system diagram.   

The NWM sends the flow agent updates on predicted queue sizes while the NTO 

gives advance notice of the expected state of the network up to 24 hours in advance.  The 

advance notice includes node and link information, as well as guidelines for assigning 

priorities to flows in the network.  Figure 6 shows the system components and the inputs 

and outputs of the system. 
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Figure 5: Notional System Diagram 

 

Figure 6: System Parameters 
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System Services 

The creation of routing tables is the service that the Network Priority Flow 

Optimization System provides.  This service ensures that higher priority flows receive 

better quality of service in the network.  The network routing tables contain the outgoing 

link that a packet in the flow will go through based on a specific flow priority and the 

corresponding destination.  To provide this service, there are two subservices: 

 A prediction of the queue size for specific nodes in network 

 Assignment of priority values to flows at the flow source node based on NTO 

The NWM sends periodic updates to a Flow Agent in the form of predicted queue 

size at a specific router.  The assignment of priority flows is based on the importance of 

the information being sent.  The NTO contains the classification levels for the type of 

information in the network. 

Outcomes for these services are: 

1. Routing tables provide better quality of service to higher priority flows. 

a. Lower priority flows see an increase in quality of service. 

b. Lower priority flows see only a minor degradation in service.  

c. Lower priority flows see a major degradation in service. 

2. Routing tables do not provide better quality of service to higher priority 

flows or it is worse. 

a. Lower priority flows see an increase in quality of service. 

b. Lower priority flows see only a minor degradation in service.  

c. Lower priority flows see a major degradation in service. 

3. Predicted queue size is either correct or not correct. 
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4. Assignment of priority levels is either correct or not correct. 

This research is only interested in outcomes 1, 2 and 3.  That is, it is assumed that 

the priority levels are correctly assigned at the source node of the flow. 

Workload 

The overall workload of the system is a function of the configuration of the network.  

This configuration is dependent upon the number of nodes in the network and the number of 

links connecting the nodes.  The environment in which the system operates is affected when 

the workload parameters of the system are changed. The workload parameters are discussed 

below. 

Bandwidth Demand 

The bandwidth of a flow includes both the size of an individual packet and the rate at 

which the source node sends a series of packets.  The bandwidth demand on the network is 

dependent upon the number of flows in the network.   

Number of Nodes and Links 

The number of nodes and links affect how long it takes the algorithm to calculate the 

paths for flows in the network.  The more nodes and links there are in the network the longer 

it will take the algorithm to run.   

Ratio of Flow Priorities 

This workload parameter affects how well the flow agent functions.  As the ratio of 

high to low priority flows increase, the workload on the flow agent also increases. 

Number of Flows 

The number of flows affects the runtime of the algorithm.  If there are more flows to 

be route then it will take longer to compute the routing tables. 
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Performance Metrics 

The performance metrics are the attributes of the system that are measured to 

determine if the system is meeting its goals.  The following paragraphs describe the 

performance metrics and how they are measured. 

Dropped Packets Ratio per Flow 

One of the goals of the research is to ensure that higher priority flows experience 

lower packet loss than the lower priority flows.  This metric is used to measure the ratio 

of dropped packets to total packets sent in that flow.  It categorizes each flow by its 

associated priority, which facilitates comparison of dropped packets based on priority.  A 

dropped packet is counted when a queue is unable to forward the packet.  The unit of this 

metric is the number of dropped packets in a flow over the total packets sent in that flow.   

End-To-End Delay per Flow 

The end-to-end delay of a flow is measured from the time the packet leaves the 

source until the time that the entire packet has been received at its destination.  The end-

to-end delays are categorized by the priority assigned to the flow.  The unit of this metric 

is milliseconds.      

System Parameters 

A system parameter is an attribute of the system that if varied will affect the 

response of the system.  The system parameters are discussed in the following 

paragraphs. 
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Network Weather Man Placement 

The NWM component is placed on links that are expected to have higher 

congestion.  This placement provides the system better visibility into the current state of 

the network.  If the NWM component is placed on links with less congestion, the system 

may not ever get a recalculate message because the queue may not reach the threshold 

value. 

Router Capacity Threshold 

The Flow Agent uses the router capacity threshold.  When the threshold value is 

exceeded the Flow Agent recalculates the routing tables for the network to reduce 

utilization of that router by lower priority flows.  A lower threshold value causes a higher 

workload on the system due to more frequent recalculations. 

Network Tasking Order 

The NTO supplies the Flow Agent with advance notice of network state.  The 

correctness of the state information can affect the response of the system.  Having some 

invalid future state of the network causes the system to have a higher workload since it is 

unable to precalculate the routing information.  

Link Data Rates 

The link data rate is the capacity of a link to carry data measured in Mbps.  An 

increase in this rate causes additional workload on the system in the form of increased 

queue sizes and more rerouting of lower priority flows.    
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Flow Agent Placement 

The flow agent placement specifies where flow agent is located inside the 

network.  There currently is only one flow agent and the placement inside the network is 

arbitrary. 

Factors 

Table 4 lists the factors for this research and the corresponding levels for each.  

The following paragraphs describe the factors selected from the preceding parameters.  

How the factors are varied and to what extent are discussed.   

Table 4: Experimental Factors 

Ratio of Priority Levels High to Low 4:1 1:1 

Bandwidth Demand, Percentage of Network 

Bandwidth 

~65% ~40% 

Routing Table Update Threshold 50% 70% 

Network Tasking Order Validity High Low 
 

 

Ratio of Priority Levels 

A flow is assigned one of two priority levels: high and low.  The ratio is 

expressed as high to low and the corresponding levels are: 4:1 and 1:1.  These levels are 

chosen to determine how the system reacts when there are many higher priority flows 

compared to lower priority flows in the system.  As the ratio of higher to lower priority 

flows increase, the system should experience a higher workload as it tries not to drop any 

packets from the higher priority flows.   

Bandwidth Demand 

The system experiences two different kinds of bandwidth demand: high and 

normal.  High bandwidth demand is defined as approximately 65 percent of the total 
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bandwidth of the network.  For example if the total bandwidth of the network is 100 GB 

per second then total demand from all the flows is set to 65 GB per second.  A normal 

demand is defined as approximately 40 percent of the total bandwidth of the network.  

These levels are defined to ensure that the system reacts in an expected manner. That is, 

as the bandwidth demand increases the higher priority flows receive priority placement in 

the queues.  It is expected that the lower priority flows will experience a higher rate of 

packet loss than the higher priority flows.  

Routing Table Update Threshold 

The routing table update threshold has two levels: 50 and 70 percent full.  This 

threshold value is tied to queue utilization.  The two threshold levels evaluate the time it 

takes the system to react to the predicted queue size.  It is expected that as the threshold 

increases, the system will experience an increased number of packets lost in higher 

priority flows. 

Network Tasking Order 

The NTO correctness levels are high and low.  When the level of correctness is 

set to high, the network state will be exactly as the NTO states.  When the level of 

correctness is low, the network state is not as the NTO predicts and the normal network 

topology is used. 

These two correctness levels are chosen because missions in the military can 

change rapidly, therefore the Flow Agent must continue to provide valid routing tables 

for the nodes even when the network state does not match that of the NTO.  When the 

NTO is not correct, the preferred service to higher priority flows cannot be guaranteed 

and all flows will experience similar delay and packet loss. 
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The simulation is run for 100 seconds and when the NTO is valid, the nodes and 

edges will be available for use by the low priority flows during the following times, 20 to 

40 seconds and 60 to 90 seconds.  The number of NTO nodes that each system was able 

to utilize was 5 extra nodes and 10 additional edges that connected the nodes to the 

existing graphs.   

Evaluation Technique 

A network simulation is used to evaluate the quality of service for network flows 

with varying levels of priority.  The network simulation environment is created using 

Network Simulator 2 (NS2), a widely used network simulator.  In addition to the network 

environment, the routing protocol for the nodes in the network is developed in C++.  

Simulation was chosen because it is easier and cheaper to build a simulation with the 

infrastructure needed for the experiment than using other methods.  In addition, the 

parameters that are being varied are easier to control in a simulation environment.   

A flow agent is created using the C++ programming language and is inserted into 

NS2 framework to control the routing tables of the nodes in the system.  The flow agent 

takes input from the network, the NTO and the NWM.  The NWM components are 

placed on the links that connect the different clusters in the network and any link that is 

thought to have high utilization.  The flow agent calculates the path taken for each flow 

in the network.  This path is based on queue size threshold value, the priorities assigned 

to each flow by the NTO and the predicted queue sizes for the nodes provided by the 

NWM.  Each time a queue size threshold value is reached for a node, the Flow Agent 

recalculates the routing tables for the lower priority flows.  Priority queues are used 
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throughout the simulation, which means that if the queue size is exceeded all queues 

including queues linked to NWM begin dropping the lower priority packets.  For 

example, if the threshold value is set at 50 percent, the recalculation of routing tables will 

begin only if the predicted value sent by NWM reaches this threshold. 

The output file from the simulation is used to calculate the total number of 

packets sent by the source nodes and the total number of packets received by the 

destination node.  The file also gives the ability to calculate the delay felt by each packet 

from source to destination.   

Parts of the simulation can be validated using similar research conducted at the 

Air Force Institute of Technology.  The NWM data for the Flow Agents is validated 

using initial NWM data [Stuckey 2007].The Flow Agent is validated using two similar 

simulation configurations called No Update and Queue Update that run the exact same 

scenarios with a few differences that will highlight the utility of the ARAP.  The first 

configuration is called No Update and it utilized the same routing algorithms and network 

setup as the ARAP however, no rerouting is accomplished.  No Update shows what 

happens in the network when nothing is done to reroute the flows due to congestion.  The 

second configuration is called Queue Update and is the same as the ARAP design except 

that instead of using the predicted queue sizes the system utilizes real time queue sizes.  

This enables a comparison between predicted queue values and real time queue values.  

Table 4 in the factors section of this chapter gives us 16 different scenarios that are 

looked at and each scenario had 30 different runs associated with them. 
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Experimental Design 

The experimental design scheme chosen is full factorial with a 90 percent 

confidence level for dropped packets and 95 percent confidence interval for flow delays.  

The four factors chosen each have two levels to be tested.  This leads to 2x2x2x2 = 16 

different experiments for the ARAP system.  The confidence level is used because 

combining a flow control agent and queuing prediction mechanism is likely to produce 

higher variance in some of the metrics. 

With the expectation of high variance in the system and a confidence-level of 90 

percent, each experiment is repeated 30 times.  Therefore, to achieve the desired 

confidence interval 480 total experiments are required. 

Summary 

The number of devices connecting to DoD networks continues to grow to include 

devices used in the battle space.  These devices send and receive the majority of their 

information through the network.  Therefore, it is critical that high priority information 

makes its way through the network with a better quality of service than low priority 

information.  This research implements a network layer protocol for flows with a given 

priority.   

The overall goal of the research is presented: improve the quality of service for 

flows with a high priority using an adaptive network routing algorithm through 

simulation using NS2 and TcL.  The system and workload parameters for the system 

were described.  The performance metrics described will demonstrate that the system 



 

43 

 

delivers better quality of service to high priority flows.  The factors varied show how the 

system performs without key inputs to the routing algorithm. 
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IV. Analysis and Results 

Chapter Overview 

This chapter is divided into several different sections that include component 

validation, primary simulation results and secondary simulation results.  The component 

validation section covers the steps taken to ensure accuracy and legitimacy within the 

simulation.  The primary simulation results show the results from the ARAP simulation 

runs and compares them to two other simulation configurations discussed in Chapter III.  

The secondary simulation results were completed to explore limited differences that were 

highlighted in the primary simulation results.   

Component Validation 

This section is broken down into several subsections that cover the process of 

validating each of the components used in the simulation. 

Flow Generation 

Flow generation accomplished via Network Simulator 2 (NS2) using NS2’s built 

in random number generators.  Uniform, exponential and ParetoII distributions were 

employed by the simulation to create the random flow profiles.  With each scenario 

consisted of 30 runs and a different seed value was chosen for each.  The same seeds 

were used for all three simulation configurations so that each configuration would 

experience the same flow generation profile for each scenario.   
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Uniform Distribution 

The source, destination and the priority level for a given flow was determined by 

the uniform distribution.  Figure 7 depicts the uniform distribution for the selection of the 

source and destination nodes for a particular scenario and run.  The standard error about 

the mean for the number of times that a particular node is chosen is 1.54.  This results in 

a 95 percent confidence interval of 114 to 120.  Therefore, Figure 7 shows that the NS2 

uniform random number generator provides a uniform distribution for the simulation 

scenarios.   

 

Figure 7: NS-2 Uniform Distribution for Source and Destination Nodes 

 

 Priority is also assigned based on the uniform distribution that resulted in 6023 

high priority flows and 6191 low priority flows for the 1:1 ratio.  The 4:1 ratio resulted in 

9477 high priority flows and 2401 low priority flows.  Both are within one significant 

digit away from being actual 1:1 and 4:1 ratios.   
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Exponential Distribution 

An exponential distribution was used to generate start times for each of the flows 

to provide an exponential arrival rate of packets in the system.  Figure 8 shows the start 

time versus the flow number, which depicts a slightly larger concentration of flows 

starting before 60 seconds.  Figure 9 presents a better view of the start times as they are 

displayed in ascending order based on start time.  The line in Figure 9, as depicted, shows 

only a slight exponential characteristic for the start time.  The two figures combined show 

that the profile of the start times used for the simulations are random and exponential in 

nature.   

 

Figure 8: Start Time versus Flow Number 
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Figure 9: Flow Start Time in Ascending Order 

 

ParetoII Distribution 

Internet traffic displays a heavy tailed distribution characteristic with respect to 

file size and NS2’s ParetoII distribution provides a way to mimic the file size 

characteristic for internet traffic.  Figure 10 depicts a representative example of the flow 

sizes used for the simulations and they are shown in ascending order arranged by start 

time.  To show that this does actually represents a heavy tailed distribution, the flows 

were rearranged from smallest to largest as seen in Figure 11.  The combination of these 

two figures show that the flow profile for size is indeed heavy tailed in nature and the 

assignment to a particular start time is random.   
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Figure 10: Flow Size Arranged by Start Time 
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Figure 11: Flow Size Sorted from Smallest to Largest 

 

 Network Weatherman Validation 

The Network Weatherman is utilized by the system to give predicted values of the 

future state of the system.  The four different network configurations utilized a varying 

number of Network Weatherman- the smallest number used was 6 and the largest used 

was 40.  Each Network Weatherman needs a MATLAB engine running to support its 

proper operation during the simulation.  The systems that were running the simulation 

could not handle more than 60 Network Weatherman at a time due to memory 

constraints.   

When setting up the Network Weatherman the Kalman filter has to be tuned to 
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described in [25] is to iterate through values for X and Y in a 2 by 2 matrix as shown in 

equation 6.     

Equation 3 

   
  
  

  

Original Tuned Values 

When the simulation was first set up X and Y were evaluated to be 50 and 0.1 

respectively.  The X and Y values found were for a specific network and traffic profile.  

When the final network configuration and traffic profile was completed, these values 

were used.  Figure 12 shows three graphs that detail the results for one of the Network 

Weatherman in the first configuration.  The top graph has zoomed in on the first 50 

seconds of the simulation run and the next gives a closer look at times 0 to 5 and 10 to 20 

seconds, respectively.  The Network Weatherman was only able correctly predict the size 

of the queue about one second prior to it being full.  The real problem, as can be seen, is 

that it incorrectly predicts the value of the queue as the size is shrinking.  At 1.7 seconds, 

it has the queue reaching zero when in fact it does not go below 200.   

The other increase and decrease in queue size comes between 20 and 40 seconds.  

Again, the Network Weatherman does a good job of predicting the full queue, however, 

when the queue size starts to drop the component falters.  The other configurations share 

similar results with Figure 12. 
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Figure 12: Actual Versus Predicted Queue Size 
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Retuning of Kalman Filter 

During the exploration of the primary simulation results, it was discovered that 

the original values chosen for the Network Weatherman’s Kalman filter were not 

optimal.  The tuning procedure was accomplished again with values ranging from 0.0001 

to 1000 for the X and Y variables.  The values that work the best for all the queues in the 

system were found to be X = 85 and Y = 0.001.  Figure 13 displays the results for one of 

the queues in the system.  The system was setup to predict 0.6 seconds into the future.  

When looking at Figure 13 it is important to note that it does not appear that, the Network 

Weatherman actually provides a predicted value prior to the real value reaching it first.  

 

Figure 13: Kalman Filter Retuning Results 

 

This will be discussed in further detail in the secondary research results.  The Network 

Weatherman does a great job of estimating the queue size based on the current queue size 

for this type of network traffic.  The network traffic that was used in [25] was burstier in 
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nature than the network traffic represented in this research.  However, the work in [25] 

does also show an estimate of the queue size, not a prediction. 

Primary Simulation Results 

This section is broken up into several sections to show the progression of the 

research.  First, results obtained from the four original topologies and the original 

Network Weatherman tuning.  Second, an explanation is given as to why the results were 

not as expected.  Lastly, results are shown again for Topology 2 with modifications made 

to the simulation configurations. 

Topology One 

The objective of this research was to determine if the ARAP could improve the 

overall Quality of Service (QoS) for high priority flows in a network.  This section covers 

the results for the first topology.  The flow delays are looked at first followed by a 

histogram of dropped packets during five-second intervals.  Lastly, the total number of 

packets sent and dropped is provided.  The simulation scenario used to generate the 

figures in this section has a 1:1 ratio for high to low priority flows, the network demand is 

set to 40 percent and the queue utilization is set to 50 percent. 

The results for the average delay for this topology came out as excepted when the 

NTO was not used and was counter intuitive for when the NTO was used.  Figure 14 

shows the results when the NTO is utilized and Figure 15 shows the results without the 

use of NTO nodes.  Both show the mean delay for all three runs and contain a 95 percent 

confidence interval.  When NTO is not used, we see a statistically significant difference 

in the average delay in the NWM Update, as seen in column three of the graph, when 
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compared against No Update and Queue Update.  When comparing the results between 

the NTO and no NTO for the NWM Update it is hard to tell if the NTO caused an 

improvement with the high priority flows from the graphs by themselves.  The numerical, 

difference for NTO and no NTO as shown in Appendix C Table 5 is 0.16 seconds in 

favor of the NTO, however, this does not represent an empirically significant difference.  

The NWM Update increases the delay felt by the low priority flows by as much as 

three times.  The reason for this threefold increase is due to the extra routes that are now 

available to the low priority flows.  These extra routes will enable some of the paused 

low priority flows the chance to be restarted.  This new route is most likely not as optimal 

as the first which could lead to a greater delay.  The upside to this is that it does lead to 

more information reaching its destination. 

 

Figure 14: Topology 1 Average Delay with NTO 
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Figure 15: Topology 1 Average Delay without NTO 

 

Figures 16 and 17 show a histogram of dropped packets at five-second intervals 

for low priority flows.  The high priority flows are not shown because 99 percent of the 

high priority traffic made it to its destination.  Figures16 and 17 show the number of 

dropped packets with and without NTO nodes and edges, respectively.  When looking at 

Figure 16, keep in mind that the NTO nodes and edges are available for use during the 

following times in the simulation, 20 to 40 seconds and 60 to 90 seconds.  During those 

times, Figure 16 shows that there is a spike in the number of dropped packets experienced 

by the lower priority flows due to the low priority flows being able to be restarted at 

those times.  When looking at Figure 17, it appears that when no NTO nodes are present 

there is less packets dropped.  This is true, however, a little deceiving in that many of the 

flows that are dropping packets in Figure 16 are paused and prevented from running in 

this scenario.   
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Figure 16: Topology 1 Number of Dropped Packets with NTO 

 

 

Figure 17: Topology 1 Number of Dropped Packets without NTO 

 

This gives the appearance of degraded performance when the NTO nodes are 

utilized in the system.  However, that depends on what is considered better: either letting 

nothing get through or allowing some to pass at the prospect that it may be dropped. 

Figures 18 and 19 show the results of the number of packets sent versus the 

number of packets dropped with and without NTO nodes and edges, respectfully.   
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Figure 18: Topology 1 Dropped versus Sent Packets with NTO 

 

 

Figure 19: Topology 1 Dropped versus Sent Packets without NTO 

  

Figure 18 shows that it has dropped more overall low priority packets than Figure 

19.  The numerical value for the drop rate when the NTO nodes are used is 22,362 

packets dropped over 243,374 packets sent making the dropped/sent ratio 0.09188.  

Without the NTO only 5210 packets get dropped over 180,906 packets sent for a 

dropped/sent ratio of 0.02880.  A greater number of packets were sent and made it to 
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their destination; however, the dropped/sent packet ratio did get worse when using the 

NTO nodes.  Only an additional 17,151 packets were dropped, therefore 45,317 more 

packets reached their destination.  The ratio of dropped/sent packets for high priority 

flows is nearly zero.  Table 5 in Appendix C shows the remainder of the results for 

Topology 1.  

Topology Two 

The setup of this section is similar to the preceding section.  First, the average 

delay is covered followed by the dropped packets histograms and finally the total number 

of dropped packets is shown.  In Topology 2, and all subsequent topologies, there are at 

least 20 Kalman filters installed in the network.  The simulation scenario used to generate 

the figures in this section has a 4:1 ratio with a demand set to 65 percent of network 

bandwidth and queue utilization is set to 70 percent. 

The average delay results for Topology 2 are quite different from Topology 1.  

Figures 20 and 21 show average delay for high and low priority flows with and without 

NTO nodes, respectively.  The two figures show that the NTO and the NWM make no 

difference in this new topology with respect to high priority flows.  The numerical data 

provides a similar picture for delay in that the difference in the values for high priority 

flows with the above-mentioned setup is an improvement of 0.04785 seconds and the low 

priority flows improvement is 0.0559 seconds when utilizing the NTO nodes.  When 

looking at the comparison between No Update and the NWM update the improvement is 

only 0.008 seconds when using the NTO and 0.01024 without.  The low priority flows 

show a similar magnitude but an opposite effect is present which it is to be expected 
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because they are taking the optimal routes.  The numerical data for these charts can be 

found in the Appendix in Table 6. 

 

 

 

Figure 20: Topology 2 Average Delay with NTO 
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Figure 21: Topology 2 Average Delay without NTO 

High priority packet loss is shown in Figures 22 and 23 that show a histogram of 

dropped packets at five-second intervals with the same scenario as Figures 20 and 21.  

Figure 22 represents the number of packets dropped when utilizing the NTO and Figure 

23 represents the number of packets dropped when not using the NTO. 
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Figure 22: Topology 2 High Priority Packet Loss with NTO 

 

Figure 23:  Topology 2 High Priority Packet Loss without NTO 

 

Figures 22 and 23 again look identical, however, there is a slight improvement in 

the number of packets dropped during the majority of the five second intervals when 

using the NTO.  The low priority flows also behave in a similar manner to the high 

priority flows however, they drop more packets. 

The dropped versus sent packets for high and low priority flows are shown in 

Figures 24 and 25 for this scenario.  Figure 24 is without the NTO and Figure 25 is with 
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the NTO.  Figures are again practically identical, however, there is a slight improvement 

in the amount of packets that reached their destination.   

 

Figure 24: Topology 2 Dropped versus Sent Packets without NTO 

 

There are improvements in the number in the total number of dropped packets for 

both low and high priority flows.  However, those improvements lack any statistical 

significance and they only make up 9.6 percent of the low priority dropped traffic and 3.7 

percent of the high priority dropped traffic.   
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Figure 25: Topology 2 Dropped versus Sent Packets with NTO 

Summary of Results for Topology 3 and Topology 4 

Topology 3 and topology 4 results strongly resemble those of Topology 2.  The 

numerical results for Topology 3 and 4 can be found in Appendix C in Table 7 and 8 

respectively.   

The lack of any statistically significant difference in topologies two through four 

led to the question of why is there no statistical difference between No Update, Queue 

Update and NWM Update.  One would expect to see that the Queue Update and the 

NWM Update might not be that different due, in part, to the fact that the predictions are 

only valid approximately 0.6 seconds into the future.  The fact that two potential 

improvements appeared on the surface to do no better than nothing at all led to the next 

couple of sections where some additional analysis was completed.   

Additional Analysis 

With Topologies 2 through 4 showing no statistically significant results and 

Topology 1 only showing significant results in the delay area.  Some additional analysis 
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was completed to help answer why the Queue Update and NWM Update could not do 

any better than nothing at all.  

Edge Betweenness 

Something that all the graphs had in common was that they all had one edge 

linking a small group of nodes to a central group of nodes.  The idea is that maybe the 

single edge is where all the packets are being dropped and is related to edge betweenness.  

Where edge betweenness is a measure of how much a particular edge is needed by source 

node to reach a destination node on the other side.  The higher the edge betweenness 

value the more important that edge is to the connectivity of the graph.  The edge 

betweenness values for Topology 2 range from 0 to 200.  Another way of looking at it in 

this case is that an edge receiving a betweenness value of 200 is an edge that is highly 

utilized by Topology 2.  If an edge has a high betweenness value than there is not many 

paths around that edge.  This can cause some issues with the ARAP routing of high 

priority flows.  The multicommodity routing algorithm attempts to spread the flows out 

over the network, however, the spreading out of flows is hindered by edges with high 

betweenness values.    

The scenario used to look at edge betweenness has a 4:1 ratio, demand is set to 65 

percent and queue utilization is 70 percent because it is the best example of what I was 

looking for in my results. The other scenarios do not give a clear picture of this especially 

when the ratio is 1:1.  As can be seen from Figure 26 the edges with a betweenness value 

greater than 100 drop considerably more packets than those with 100 or less.  The same 

can be said about Figure 27, which shows the same run, but without the NTO.   
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Figure 26: Topology 2 Dropped Packets Based on Edge Betweenness Value with NTO 

 

 

Figure 27: Topology 2 Dropped Packets Based on Edge Betweenness Value without 

NTO 

 Conclusions from Additional Analysis 

Another possible answer discovered when looking at the betweenness values was 

that when the edges with NWM on them reached their threshold low priority flows were 

routed around the congested edges.  The significance of this is that in Topologies 2 

through 4, many of the edges that picked up the additional load did not have a NWM on 
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them and when queues on those edges reached capacity they were unable to tell the 

ARAP system that they were overloaded and thus continued to drop packets without any 

relief.  Lastly, the configuration setup was reevaluated from Chapter III and it was found 

that priority droptail queues were used for all simulation configurations on each edge of 

the network and the multicommodity flow algorithm was used to route high priority 

flows in all three configurations. 

With exception of Topology 1 the results from the primary simulation runs 

suggested that there is no difference between the results obtained for the three simulation 

configurations No Update, Queue Update and NWM Update.  With this knowledge and 

the reevaluated information, it is concluded that the ARAP system was being compared 

to variations of itself and not a normal network for the following reasons. First, the No 

Update configuration is also utilizing the Fleischer algorithm to spread out the high 

priority flows more evenly in the network.  A normal network does not utilize an 

algorithm like Fleischer’s, networks use shortest path no matter the flow type.  Second, 

the use of priority queues on all the edges in every configuration could potentially mask 

the effects of the ARAP.   

Secondary Simulation Results 

To correct for the invalid assumptions made during the setup of the primary 

results all the simulations for Topology 2 is rerun with No Update, utilizing only the 

shortest path to route flows in the network and no priority queues is utilized.  For the 

Queue Update, the Fleischer algorithm is used as well as priority queues but only on the 

edges that have the ability to send the ARAP an updated queue size value.  The NWM 
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Update, also uses the Fleischer algorithm and priority queues are used only on the edges 

that also contained the NWM. 

Secondary Topology Two 

This section covers the results for when Topology 2 was run again with priority 

queues removed expect for edges that have the ability to send the ARAP a queue size 

update.  The simulation setup for all the figures of this section of these charts is ratio of 

4:1 with a demand set to 65 percent of the network bandwidth and the queue utilization 

set to 70 percent.  Each figure will contain both with and without the NTO information 

on the top and bottom, respectively.   

In Figure 28, the delay shows that the NWM does in fact make a significant 

difference in the delay that the low and high priority flows experience.  The graphs 

contain a 95 percent confidence interval.  The top graph in Figure 28 displays the results 

when the NTO is used and the lower graph in the figure displays the results when no 

NTO is used.  It is hard to see from the graphs in Figure 28 but the NTO also improves 

the delay by 0.05 seconds.  Figure 29 more clearly shows the improvement that is 

provided by using the NTO in conjunction with the NWM.  Figure 29 also contains error 

bars with a 95 percent confidence interval and shows that the high priority flows do 

experience a higher delay than the lower priority flows that are attributed to the spreading 

out of the high priority flows in the network.   

Figure 29 also shows that using predicted or real-time values have no significant 

impact on the delay felt by the flows in the network.  In Chapter V, an explanation is 

given to explain the lack of significance with respect to real-time versus predicted.   
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Figure 28: Secondary Average Delay Results for Topology 2 with and without NTO 
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Figure 29 Average Delay With and Without NTO for Network Weatherman 

 

 When looking at the dropped packets for the five-second interval histogram for 

high priority flows there is a significant improvement shown between the NWM and the 

No Update configuration as seen in the top of Figure 30.  The low priority flows also 

experience a significant decrease in the number of dropped packets over the No Update 

configuration.  The error bars in Figure 30 represents a 90 percent confidence interval. 

 Figure 30 also shows that using the real-time versus predicted values to change 

the routes of the lower priority flows contain no significant difference.  An explanation 

for this is covered in Chapter V. 
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Figure 30: Secondary Results for Topology 2 Dropped Packets Histogram for Low and 

High Priority Flows 

 

 The total number of packets dropped and sent for this configuration is displayed 

in Figure 31.  The error bars in Figure 31 represent a 95 percent confidence interval.  The 

top graph in Figure 31 is the number of dropped packets with the NTO in use and the 

bottom graph is without the NTO.   
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Figure 31: Secondary Results Topology 2 Dropped versus Sent Packets 

 

Summary 

In summary, the beginning of this chapter highlighted three different simulation 

configurations that showed little to no difference when using the ARAP system. Upon 

further investigation, it was found that these results appeared irrelevant because all three 

configurations contained the routing algorithm of the ARAP system and the priority drop 
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tail queues on all the edges masked the impact of the ARAP system.  In the primary 

results section we were able to determine that the NTO does improve the amount of data 

that is delivered to its destination but the results are not always statically significant.  The 

NWM aspect of the ARAP system displayed no distinct difference between the other to 

simulation configurations in the primary results section. This is due to the utilization of 

the multicommodity flow algorithm in all three initial network configurations.   

The secondary results section shows that the ARAP system does provide a 

statistically significant difference between it and the No Update configuration.  Whether 

the ARAP system uses predicted or real-time queue size updates appears to have no 

effect on the results.   

In the validation section, it was shown that the NWM was able to accurately 

estimate the queue sizes.  However, the NWM was unable to provide predicted queue 

sizes for this network setup.   
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V.  Conclusions and Recommendations 

Chapter Overview 

This chapter discusses the conclusions of the research presented in the previous 

chapters.  Some new ideas and potential follow on tasks have been discovered along the 

way and are covered in more detail in the future research section of this chapter.    

Conclusions of Research 

In this thesis, an Adaptive Routing Algorithm for Priority (ARAP) flows in a 

Network was presented as a way to improve the quality of service in the realm of flow 

delays and packet loss rates.  In order to accomplish this, three previous ideas including 

the Network Tasking Order (NTO), Network Weatherman (NWM) and multicommodity 

flow algorithm were put together to create a routing agent that utilized the information 

from those products to direct information flows in the network around congested edges to 

less congested edges when possible.  If redirection of the information flows were not 

possible, the lower priority flows were stopped to allow the higher priority flows better 

access to the network.   

The first objective of this research was to develop a priority aware routing 

protocol for network flows.  This objective was accomplished by creating a flow agent 

called the ARAP that was able to utilize the information provided the NTO and NWM.  

Chapter III outlined and discussed the setup of the simulation and components used 

including the ARAP.  The NTO provides the information required to categorize each 

flow into the appropriate priority and gives source destination pairs for high priority 

flows.  The NWM provides predicted queue sizes that enabled the rerouting of flows 
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around potentially congested edges.  This simulation provides a foundation for future 

work in the area of network optimization. 

The second objective of this research was to improve the quality of service for 

higher priority flows in the network.  Chapter IV provided the simulation results and was 

broken down into two results sections.  The primary results section compared three 

different variations of the ARAP system.  The results from the primary section did not 

provide the insight that was intended for this research initially.  A mistake was made by 

comparing three different variations of the ARAP system however, some valuable 

information was obtained from the data.  The data from the primary results section shows 

that the individual components of the ARAP system potentially contribute varying 

amounts of improvement.  I suggest that the multicommodity flow algorithm adds the 

most value to the system but this is left to be proved during another research effort. 

The secondary results section shows that the ARAP system does in fact provide 

better quality of service to the higher priority flows in the network.  However, there is no 

difference between using the predicted queue size from the NWM or real-time queue 

sizes provided by the queues.   

The third objective of this research was to integrate the prediction of queue sizes 

into the routing protocol.  The integration of the NWM was accomplished by integrating 

the MATLAB 2007 libraries and the MATLAB 2010 engine.  Chapter IV covered the 

results of this integration.  The primary validation did not show proper operation of the 

Kalman filter, however, the secondary validation was able to show that the Kalman filter 

was correctly integrated into the system and was able to give accurate estimates of the 

queue sizes.  However, the Network Weatherman was unable to predict these estimates 
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into the future for this style network and traffic pattern.  This explains why there was no 

difference between the results for the NWM update and Queue update network 

configurations.  The Kalman filter does a great job of estimating the size of the queues 

when properly tuned, however, this research has found that the NWM does not provide 

predicted values for the network queues in this research. 

Recommendations for Future Research 

This research primary focus was on high and low priority levels.  It would be 

difficult to assign all the information flowing across the military network into only two 

priority levels therefore further research on this subject would be to expand on the 

number of priority levels the system could handle.   

Further research needs to be done in the area of the NWM to determine its ability 

to apply it to network applications on this scale.  The work done in [25] used traffic that 

caused the queue sizes to fluctuate in a much greater rate than those in this research.  It 

could be that the NWM cannot accurately predict this style of traffic flow where the 

queues are not changing at significant rates.  If this were the case, it would also prove 

useful to automate the tuning of the NWM so that if can become a self-correcting. 

The results of this research suggest that the value added by each component of the 

ARAP system varies.  Therefore, it would be relevant to look at the value added by each 

component singularly and in combinations to see if the system can be paired down to less 

than the three components.      
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Appendix A 

 

Figure 32: Topology 3 

 

 

Figure 33: Topology 4 
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Figure 34: Topology 2 with Additional NWM 
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Appendix B 

Script used to Generate Topology 2 and Topology 4 

 

# <method keyword><number of graphs> [<initial seed>] 

# <# stubs/trans node><#rand. t-s edges><#rand. s-s edges> 

# <n><scale><edgemethod><alpha> [<beta>] [<gamma>] 

#  

ts 10 52 

1 0 2 

3 10 4 0.5 0 0 

5 10 4 0.4 0 0 

6 10 4 0.4 0 0 

 

 

Output of the GA Tech script which generated the Topologies. 

 

Topology 4  

# Generated by sgb2ns, created by Polly Huang 

# GRAPH (#nodes #edges id uuvvww xx yyzz): 

# 105 582 

transtub(0,1,0,2,{3,92,4,0.500,0.000,0.000},{5,46,4,0.400,0.000,0.000},{6,46,4,0.400,0.0

00,0.000}) 92 1 1 1  

 

Topology 2 

# Generated by sgb2ns, created by Polly Huang 

# GRAPH (#nodes #edges id uuvvww xx yyzz): 

# 105 580 

transtub(0,1,0,2,{3,92,4,0.500,0.000,0.000},{5,46,4,0.400,0.000,0.000},{6,46,4,0.400,0.0

00,0.000}) 92 1 1 1  
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Appendix C 

Table 5: Topology 1 Results

 

No NTO

Ratio 1:1 Dropped/Sent Mean Delay Dropped/Sent Mean Delay Dropped/Sent Mean Delay

Demand 0.4 Utility 0.5 0.00002 0.55342 0.00005 0.45934 0.00003 0.42227

Demand 0.4 Utility 0.7 0.00001 0.55219 0.00001 0.4765 0.00003 0.4416

Demand 0.65 Utility 0.5 0.00584 1.36032 0.00777 1.28951 0.00795 1.29506

Demand 0.65 Utility 0.7 0.00616 1.36184 0.00753 1.29132 0.00776 1.29474

Ratio 4:1

Demand 0.4 Utility 0.5 0.00796 0.56785 0.00847 0.52417 0.00843 0.51691

Demand 0.4 Utility 0.7 0.008 0.56529 0.00839 0.53016 0.0085 0.52051

Demand 0.65 Utility 0.5 0.08918 1.44124 0.08924 1.40353 0.08924 1.40888

Demand 0.65 Utility 0.7 0.08875 1.44205 0.0891 1.40812 0.08926 1.40719

with NTO

Ratio 1:1 Dropped/Sent Mean Delay Dropped/Sent Mean Delay Dropped/Sent Mean Delay

Demand 0.4 Utility 0.5 0.00001 0.54934 0.00004 0.59687 0.00003 0.58612

Demand 0.4 Utility 0.7 0.00001 0.54719 0.00007 0.5987 0.00004 0.58888

Demand 0.65 Utility 0.5 0.00629 1.35646 0.00785 1.55427 0.00789 1.54995

Demand 0.65 Utility 0.7 0.00603 1.35577 0.00779 1.55659 0.00801 1.5676

Ratio 4:1

Demand 0.4 Utility 0.5 0.00806 0.56581 0.00836 0.57773 0.00852 0.56691

Demand 0.4 Utility 0.7 0.00782 0.56478 0.00853 0.57654 0.00845 0.56474

Demand 0.65 Utility 0.5 0.08887 1.43911 0.08783 1.57738 0.08743 1.57873

Demand 0.65 Utility 0.7 0.08889 1.43953 0.08782 1.57252 0.08818 1.57914

No NTO

Ratio 1:1 Dropped/Sent Mean Delay Dropped/Sent Mean Delay Dropped/Sent Mean Delay

Demand 0.4 Utility 0.5 0.05899 0.52853 0.04261 0.47482 0.0288 0.42899

Demand 0.4 Utility 0.7 0.0587 0.52806 0.04604 0.4835 0.03876 0.46323

Demand 0.65 Utility 0.5 0.31178 1.121 0.24158 1.05063 0.24769 1.08257

Demand 0.65 Utility 0.7 0.3116 1.12153 0.24364 1.05625 0.24761 1.07512

Ratio 4:1

Demand 0.4 Utility 0.5 0.1171 0.43388 0.08319 0.39825 0.07583 0.39732

Demand 0.4 Utility 0.7 0.11836 0.42958 0.09295 0.4032 0.08005 0.39646

Demand 0.65 Utility 0.5 0.44504 0.68373 0.39287 0.66787 0.39359 0.68379

Demand 0.65 Utility 0.7 0.44674 0.68399 0.39643 0.67241 0.39587 0.68497

With NTO

Ratio 1:1 Dropped/Sent Mean Delay Dropped/Sent Mean Delay Dropped/Sent Mean Delay

Demand 0.4 Utility 0.5 0.05839 0.52186 0.09464 1.03841 0.09188 1.24005

Demand 0.4 Utility 0.7 0.05811 0.52094 0.09579 1.0296 0.08882 1.23216

Demand 0.65 Utility 0.5 0.30692 1.10175 0.34941 2.49817 0.35079 2.66491

Demand 0.65 Utility 0.7 0.30664 1.10168 0.34154 2.38349 0.3494 2.51709

Ratio 4:1

Demand 0.4 Utility 0.5 0.11711 0.43073 0.08587 0.54856 0.0816 0.55478

Demand 0.4 Utility 0.7 0.11794 0.43052 0.08963 0.54713 0.07428 0.52987

Demand 0.65 Utility 0.5 0.44175 0.6725 0.35471 1.41594 0.35191 1.41307

Demand 0.65 Utility 0.7 0.44057 0.67562 0.35231 1.35416 0.35484 1.35777

Network Weatherman Update

High Priority Flows

Network Weatherman UpdateQueue UpdateNo Update

Low Priority Flows

Network Weatherman UpdateQueue UpdateNo Update

High Priority Flows

Network Weatherman UpdateQueue UpdateNo Update

Low Priority Flows

No Update Queue Update
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Table 6: Topology 2 Results 

 
  

No NTO

Ratio 1:1 Dropped/Sent Mean Delay Dropped/Sent Mean Delay Dropped/Sent Mean Delay

Demand 0.4 Utility 0.5 0.0007 0.47195 0.0007 0.47419 0.00075 0.4861

Demand 0.4 Utility 0.7 0.0007 0.47195 0.0007 0.47155 0.0008 0.47807

Demand 0.65 Utility 0.5 0.0068 1.47095 0.00657 1.45161 0.00687 1.4392

Demand 0.65 Utility 0.7 0.0068 1.47095 0.00669 1.45565 0.00686 1.44621

Ratio 4:1

Demand 0.4 Utility 0.5 0.00262 0.44483 0.00259 0.44472 0.00263 0.44551

Demand 0.4 Utility 0.7 0.00262 0.44483 0.00258 0.44477 0.00263 0.44593

Demand 0.65 Utility 0.5 0.0446 1.47747 0.04411 1.47443 0.0443 1.46699

Demand 0.65 Utility 0.7 0.0446 1.47747 0.04444 1.47025 0.04411 1.46723

with NTO

Ratio 1:1 Dropped/Sent Mean Delay Dropped/Sent Mean Delay Dropped/Sent Mean Delay

Demand 0.4 Utility 0.5 0.00069 0.4626 0.00069 0.46506 0.00073 0.47261

Demand 0.4 Utility 0.7 0.00069 0.4626 0.00069 0.46273 0.00072 0.46746

Demand 0.65 Utility 0.5 0.00658 1.43051 0.00637 1.41633 0.00638 1.39913

Demand 0.65 Utility 0.7 0.00658 1.43051 0.00647 1.42648 0.00665 1.40727

Ratio 4:1

Demand 0.4 Utility 0.5 0.00252 0.43495 0.00251 0.43493 0.00252 0.43282

Demand 0.4 Utility 0.7 0.00252 0.43495 0.00248 0.43503 0.00251 0.43453

Demand 0.65 Utility 0.5 0.04275 1.42785 0.04259 1.42547 0.04249 1.41986

Demand 0.65 Utility 0.7 0.04275 1.42785 0.0425 1.42473 0.04252 1.41965

No NTO

Ratio 1:1 Dropped/Sent Mean Delay Dropped/Sent Mean Delay Dropped/Sent Mean Delay

Demand 0.4 Utility 0.5 0.01469 0.49192 0.01859 0.50993 0.02578 0.58298

Demand 0.4 Utility 0.7 0.01469 0.49192 0.0155 0.49533 0.02101 0.54376

Demand 0.65 Utility 0.5 0.17761 1.38878 0.20191 1.53542 0.20298 1.54343

Demand 0.65 Utility 0.7 0.17761 1.38878 0.19899 1.49952 0.20624 1.55666

Ratio 4:1 

Demand 0.4 Utility 0.5 0.01962 0.43799 0.01916 0.43719 0.02483 0.47117

Demand 0.4 Utility 0.7 0.01962 0.43799 0.01928 0.43779 0.02628 0.47416

Demand 0.65 Utility 0.5 0.25564 1.08036 0.25812 1.2147 0.24071 1.18848

Demand 0.65 Utility 0.7 0.25564 1.08036 0.256 1.15604 0.24622 1.20478

With NTO

Ratio 1:1 Dropped/Sent Mean Delay Dropped/Sent Mean Delay Dropped/Sent Mean Delay

Demand 0.4 Utility 0.5 0.01389 0.48415 0.01727 0.50362 0.02307 0.55343

Demand 0.4 Utility 0.7 0.01389 0.48415 0.01479 0.48808 0.01933 0.52585

Demand 0.65 Utility 0.5 0.17148 1.35748 0.19007 1.48136 0.19913 1.5203

Demand 0.65 Utility 0.7 0.17148 1.35748 0.19264 1.4842 0.19371 1.51688

Ratio 4:1

Demand 0.4 Utility 0.5 0.01808 0.42862 0.01801 0.42842 0.02085 0.44016

Demand 0.4 Utility 0.7 0.01808 0.42862 0.01774 0.4288 0.0232 0.45451

Demand 0.65 Utility 0.5 0.24469 1.04833 0.23887 1.13374 0.22421 1.15727

Demand 0.65 Utility 0.7 0.24469 1.04833 0.24264 1.10154 0.22453 1.14888

Low Priority Flows

No Update Queue Update Network Weatherman Update

Low Priority Flows

No Update Queue Update Network Weatherman Update

High Priority Flows

No Update Queue Update Network Weatherman Update

High Priority Flows

No Update Queue Update Network Weatherman Update
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Table 7: Topology 3 Results 

 
  

No NTO

Ratio 1:1 Dropped/Sent Mean Delay Dropped/Sent Mean Delay Dropped/Sent Mean Delay

Demand 0.4 Utility 0.5 0.00296 0.98816 0.00298 0.98615 0.00289 0.97283

Demand 0.4 Utility 0.7 0.00296 0.98816 0.00296 0.98823 0.00294 0.97672

Demand 0.65 Utility 0.5 0.02516 2.51012 0.02527 2.49508 0.02544 2.4662

Demand 0.65 Utility 0.7 0.02516 2.51012 0.02519 2.50248 0.02531 2.46876

Ratio 4:1

Demand 0.4 Utility 0.5 0.01392 0.93989 0.01389 0.93823 0.01391 0.93189

Demand 0.4 Utility 0.7 0.01392 0.93989 0.01392 0.93989 0.01393 0.93418

Demand 0.65 Utility 0.5 0.09739 2.53102 0.09748 2.52075 0.09695 2.5063

Demand 0.65 Utility 0.7 0.09739 2.53102 0.09739 2.52144 0.09694 2.50483

with NTO

Ratio 1:1 Dropped/Sent Mean Delay Dropped/Sent Mean Delay Dropped/Sent Mean Delay

Demand 0.4 Utility 0.5 0.00283 0.95664 0.00282 0.95528 0.0028 0.94258

Demand 0.4 Utility 0.7 0.00283 0.95664 0.00282 0.95625 0.00283 0.94504

Demand 0.65 Utility 0.5 0.02297 2.42602 0.02303 2.4173 0.02314 2.38524

Demand 0.65 Utility 0.7 0.02297 2.42602 0.02306 2.42822 0.02317 2.38557

Ratio 4:1

Demand 0.4 Utility 0.5 0.01294 0.90112 0.01294 0.89957 0.01292 0.89261

Demand 0.4 Utility 0.7 0.01294 0.90112 0.01294 0.9013 0.01294 0.89366

Demand 0.65 Utility 0.5 0.08913 2.43943 0.08921 2.43845 0.0886 2.4201

Demand 0.65 Utility 0.7 0.08913 2.43943 0.08898 2.43519 0.08869 2.42109

No NTO

Ratio 1:1 Dropped/Sent Mean Delay Dropped/Sent Mean Delay Dropped/Sent Mean Delay

Demand 0.4 Utility 0.5 0.06415 0.99892 0.06363 0.99715 0.06189 0.98494

Demand 0.4 Utility 0.7 0.06415 0.99892 0.06428 0.99944 0.06265 0.98893

Demand 0.65 Utility 0.5 0.30482 2.10247 0.30228 2.08881 0.29568 2.05831

Demand 0.65 Utility 0.7 0.30482 2.10247 0.30339 2.09429 0.2953 2.0612

Ratio 4:1

Demand 0.4 Utility 0.5 0.08939 0.83469 0.08887 0.83003 0.0874 0.8155

Demand 0.4 Utility 0.7 0.08939 0.83469 0.08939 0.83469 0.08825 0.82209

Demand 0.65 Utility 0.5 0.40111 1.58206 0.39685 1.55302 0.38263 1.51852

Demand 0.65 Utility 0.7 0.40111 1.58206 0.39741 1.55527 0.38388 1.5159

With NTO

Ratio 1:1 Dropped/Sent Mean Delay Dropped/Sent Mean Delay Dropped/Sent Mean Delay

Demand 0.4 Utility 0.5 0.05977 0.97553 0.05989 0.97703 0.05817 0.96586

Demand 0.4 Utility 0.7 0.05977 0.97553 0.06029 0.9769 0.05893 0.966

Demand 0.65 Utility 0.5 0.28563 2.06064 0.28721 2.07289 0.27932 2.02858

Demand 0.65 Utility 0.7 0.28563 2.06064 0.28911 2.08164 0.27864 2.03578

Ratio 4:1

Demand 0.4 Utility 0.5 0.08142 0.81095 0.08132 0.80751 0.08027 0.79056

Demand 0.4 Utility 0.7 0.08142 0.81095 0.08186 0.81279 0.08054 0.79308

Demand 0.65 Utility 0.5 0.3715 1.52149 0.37302 1.52367 0.35592 1.47583

Demand 0.65 Utility 0.7 0.3715 1.52149 0.37126 1.51362 0.35796 1.47857

Low Priority Flows

No Update Queue Update Network Weatherman Update

Low Priority Flows

No Update Queue Update Network Weatherman Update

High Priority Flows

No Update Queue Update Network Weatherman Update

High Priority Flows

No Update Queue Update Network Weatherman Update
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Table 8: Topology 4 Results 

 
  

No NTO

Ratio 1:1 Dropped/Sent Mean Delay Dropped/Sent Mean Delay Dropped/Sent Mean Delay

Demand 0.4 Utility 0.5 0.002 0.88783 0.00181 0.83843 0.00201 0.8697

Demand 0.4 Utility 0.7 0.002 0.88783 0.00181 0.8502 0.00197 0.87246

Demand 0.65 Utility 0.5 0.02375 2.21099 0.02297 2.13985 0.02337 2.15936

Demand 0.65 Utility 0.7 0.02375 2.21099 0.02312 2.1518 0.02321 2.15743

Ratio 4:1

Demand 0.4 Utility 0.5 0.013 0.84408 0.01268 0.82097 0.01304 0.8365

Demand 0.4 Utility 0.7 0.013 0.84408 0.01277 0.824 0.01294 0.84105

Demand 0.65 Utility 0.5 0.09877 2.24878 0.09737 2.22705 0.09794 2.22941

Demand 0.65 Utility 0.7 0.09877 2.24878 0.09776 2.23079 0.09807 2.23414

with NTO

Ratio 1:1 Dropped/Sent Mean Delay Dropped/Sent Mean Delay Dropped/Sent Mean Delay

Demand 0.4 Utility 0.5 0.00176 0.7926 0.0016 0.75769 0.00177 0.79492

Demand 0.4 Utility 0.7 0.00176 0.7926 0.00168 0.76961 0.00173 0.79483

Demand 0.65 Utility 0.5 0.01971 1.99087 0.01926 1.93599 0.01936 1.95613

Demand 0.65 Utility 0.7 0.01971 1.99087 0.01924 1.94277 0.01951 1.96083

Ratio 4:1

Demand 0.4 Utility 0.5 0.01073 0.74698 0.01062 0.73525 0.01068 0.73468

Demand 0.4 Utility 0.7 0.01073 0.74698 0.01067 0.73623 0.01062 0.73716

Demand 0.65 Utility 0.5 0.08546 2.01342 0.08457 1.99414 0.08478 1.99551

Demand 0.65 Utility 0.7 0.08546 2.01342 0.08484 1.99991 0.08488 1.99735

No NTO

Ratio 1:1 Dropped/Sent Mean Delay Dropped/Sent Mean Delay Dropped/Sent Mean Delay

Demand 0.4 Utility 0.5 0.06465 0.93834 0.05678 0.86495 0.06619 0.9267

Demand 0.4 Utility 0.7 0.06465 0.93834 0.05785 0.88017 0.06528 0.92935

Demand 0.65 Utility 0.5 0.30824 1.93903 0.28302 1.83868 0.30474 1.89992

Demand 0.65 Utility 0.7 0.30824 1.93903 0.28429 1.85584 0.3064 1.9159

Ratio 4:1

Demand 0.4 Utility 0.5 0.084 0.77186 0.07502 0.72645 0.08531 0.76479

Demand 0.4 Utility 0.7 0.084 0.77186 0.07528 0.73 0.0847 0.77497

Demand 0.65 Utility 0.5 0.40654 1.4305 0.3755 1.36443 0.39346 1.39583

Demand 0.65 Utility 0.7 0.40654 1.4305 0.37277 1.37265 0.39478 1.40391

With NTO

Ratio 1:1 Dropped/Sent Mean Delay Dropped/Sent Mean Delay Dropped/Sent Mean Delay

Demand 0.4 Utility 0.5 0.05467 0.85986 0.04936 0.80609 0.05962 0.89278

Demand 0.4 Utility 0.7 0.05467 0.85986 0.05052 0.82418 0.05762 0.88024

Demand 0.65 Utility 0.5 0.27585 1.82663 0.25989 1.75143 0.28119 1.81836

Demand 0.65 Utility 0.7 0.27585 1.82663 0.25818 1.76528 0.28228 1.82772

Ratio 4:1

Demand 0.4 Utility 0.5 0.06881 0.70047 0.06662 0.68095 0.06833 0.68339

Demand 0.4 Utility 0.7 0.06881 0.70047 0.06462 0.67687 0.06775 0.68421

Demand 0.65 Utility 0.5 0.36246 1.32747 0.34236 1.27955 0.34965 1.28933

Demand 0.65 Utility 0.7 0.36246 1.32747 0.34029 1.29119 0.34682 1.28811

Low Priority Flows

No Update Queue Update Network Weatherman Update

Low Priority Flows

No Update Queue Update Network Weatherman Update

High Priority Flows

No Update Queue Update Network Weatherman Update

High Priority Flows

No Update Queue Update Network Weatherman Update
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Table 9: Topology 2 Secondary Results 

 
 

No NTO

Ratio 1:1 Dropped/Sent Mean Delay Dropped/Sent Mean Delay Dropped/Sent Mean Delay

Demand 0.4 Utility 0.5 0.01312 0.56055 0.00133 0.28758 0.00127 0.28874

Demand 0.4 Utility 0.7 0.01312 0.56055 0.00131 0.29121 0.0013 0.29255

Demand 0.65 Utility 0.5 0.10493 1.59001 0.02925 1.02472 0.02984 1.03267

Demand 0.65 Utility 0.7 0.10493 1.59001 0.03003 1.05429 0.03018 1.06431

Ratio 4:1

Demand 0.4 Utility 0.5 0.01773 0.4995 0.00133 0.27696 0.00136 0.27748

Demand 0.4 Utility 0.7 0.01773 0.4995 0.00137 0.27964 0.00138 0.27981

Demand 0.65 Utility 0.5 0.11753 1.43245 0.03717 1.03639 0.03741 1.03839

Demand 0.65 Utility 0.7 0.11753 1.43245 0.03796 1.04944 0.03808 1.05055

with NTO

Ratio 1:1 Dropped/Sent Mean Delay Dropped/Sent Mean Delay Dropped/Sent Mean Delay

Demand 0.4 Utility 0.5 0.01738 0.47939 0.00127 0.28073 0.00123 0.28206

Demand 0.4 Utility 0.7 0.01738 0.47939 0.0013 0.28454 0.00129 0.28603

Demand 0.65 Utility 0.5 0.11061 1.35616 0.0268 0.97483 0.02714 0.98237

Demand 0.65 Utility 0.7 0.11061 1.35616 0.02748 1.00682 0.02776 1.01425

Ratio 4:1

Demand 0.4 Utility 0.5 0.01247 0.54134 0.00124 0.27029 0.00125 0.27074

Demand 0.4 Utility 0.7 0.01247 0.54134 0.00126 0.27303 0.00128 0.27316

Demand 0.65 Utility 0.5 0.0992 1.52834 0.03459 0.98732 0.03479 0.98909

Demand 0.65 Utility 0.7 0.0992 1.52834 0.03536 0.99978 0.03544 1.00049

No NTO

Ratio 1:1 Dropped/Sent Mean Delay Dropped/Sent Mean Delay Dropped/Sent Mean Delay

Demand 0.4 Utility 0.5 0.01242 0.55496 0.00113 0.30371 0.00118 0.30483

Demand 0.4 Utility 0.7 0.01242 0.55496 0.00121 0.3075 0.0013 0.30856

Demand 0.65 Utility 0.5 0.10318 1.60288 0.03311 1.03075 0.03081 1.03199

Demand 0.65 Utility 0.7 0.10318 1.60288 0.03071 1.0579 0.03155 1.06664

Ratio 4:1 

Demand 0.4 Utility 0.5 0.01644 0.4941 0.00127 0.27992 0.00125 0.28112

Demand 0.4 Utility 0.7 0.01644 0.4941 0.00128 0.28195 0.00138 0.28221

Demand 0.65 Utility 0.5 0.11821 1.42879 0.02925 0.95418 0.0301 0.95478

Demand 0.65 Utility 0.7 0.11821 1.42879 0.0297 0.97116 0.03137 0.97404

With NTO

Ratio 1:1 Dropped/Sent Mean Delay Dropped/Sent Mean Delay Dropped/Sent Mean Delay

Demand 0.4 Utility 0.5 0.01638 0.47733 0.0011 0.29554 0.0011 0.2967

Demand 0.4 Utility 0.7 0.01638 0.47733 0.00121 0.30075 0.00129 0.30226

Demand 0.65 Utility 0.5 0.11003 1.36328 0.02911 0.97607 0.02795 0.97999

Demand 0.65 Utility 0.7 0.11003 1.36328 0.02801 1.00851 0.02871 1.01665

Ratio 4:1

Demand 0.4 Utility 0.5 0.01141 0.53169 0.0011 0.2741 0.00106 0.27508

Demand 0.4 Utility 0.7 0.01141 0.53169 0.00103 0.27633 0.00115 0.27633

Demand 0.65 Utility 0.5 0.09729 1.52302 0.02657 0.90807 0.02696 0.9101

Demand 0.65 Utility 0.7 0.09729 1.52302 0.02682 0.92507 0.02868 0.92722

Low Priority Flows

No Update Queue Update Network Weatherman Update

Low Priority Flows

No Update Queue Update Network Weatherman Update

High Priority Flows

No Update Queue Update Network Weatherman Update

High Priority Flows

No Update Queue Update Network Weatherman Update
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